
CSP Users Guide

Leif Johansson

Enheten för IT och Media Stockholms Universitet CSP version 0.20 (Mon May 28 16:20:54 CEST 2001)

1 Introduction

CSP is a perl wrapper around OpenSSL (http://www.openssl.org) which makes it easy to setup and run
multiple certi�cate authorities with di�erent con�guration. CSP also includes support for generating a set
of html �les which can be used as a static certi�cate repository.

2 Obtaining and installing CSP

CSP is available for download from http://devel.it.su.se/projects/CSP. Apart from perl (version 5.6.1 or
later) and OpenSSL (verson 0.9.6 or later) you need the perl-modules Date::Calc and Term::Prompt which
you can �nd at your CPAN mirror (http://www.cpan.org). Install these prerequisites and then download the
CSP tarball. Unpack CSP and install it using the following commands:

zcat CSP-x.tar.gz | tar xvf -
...
cd CSP-x
perl Makefile.PL
make
make install

This will among other things install a script csp which is installed where perl installed its scripts (typically
/usr/local/bin or /usr/bin). You should be able to run this script with the ��help �ag to get a summary
of options:

csp --help
Usage: /usr/bin/csp <ca name> create

/usr/bin/csp <ca name> delete

/usr/bin/csp <ca name> init
[--crtfile=<PEM certificate>]

/usr/bin/csp <ca name> init
[--keysize=<size>]
[--keypass=<ca private key password>]

2. Obtaining and installing CSP 2

[--keyfile=<private key file>]
[--csrfile=<output PKCS10 request>]
[--days=<ca certificate validity (days)>]
[--email=<subjectAltName email>]
[--url=<subjectAltName url>]
[--digest=<sha1*|md5|md2|mdc2>]
[--verbose]+
<CA Subject (X509 Name)>

/usr/bin/csp <ca name> request
[--keysize=<size>]
[--keypass=<subject private key password>]
[--keyfile=<private key file>]
[--type=<*user|server|objsign|ca>]
[--csrfile=<output pkcs10 request file>]
[--noconfirm]
[--verbose]+
[--digest=<sha1*|md5|md2|mdc2>]
{<X509 Name>|<RFC822 address>|<DNS name>}

/usr/bin/csp <ca name> issue
[--keysize=<size>]
[--keypass=<subject private key password>]
[--keyfile=<private key file>]
[--noconfirm]
[--verbose]+
[--type=<*user|server|objsign|ca>]
[--days=<certificate validity (days)>]
[--capass=<CA private key password>]
[--email=<subjectAltName email>]
[--url=<subjectAltName url>]
[--ip=<subjectAltName ip address>]
[--dns=<subjectAltName dns name>]
[--digest=<sha1*|md5|md2|mdc2>]
{<X509 Name>|<RFC822 address>|<DNS name>}

/usr/bin/csp <ca name> sign
[--type=<*user|server|objsign|ca>]
[--capass=<CA private key password>]
[--csrfile=<input PKCS10 request>]
[--email=<subjectAltName email>]
[--url=<subjectAltName url>]
[--ip=<subjectAltName ip address>]
[--dns=<subjectAltName dns name>]
[--digest=<sha1*|md5|md2|mdc2>]
[--verbose]+

3. Con�guring CSP 3

/usr/bin/csp <ca name> p12
[--p12pass=<pkcs12 export password>]
[--keypass=<private key password>]
[--verbose]+
<serial>

/usr/bin/csp <ca name> revoke <serial>
[--noconfirm] [--quiet[=<level>]]

/usr/bin/csp <ca name> gencrl
[--crldays=<days to next CRL update>]
[--crlhours=<hours to next CRL update>]
[--digest=<sha1*|md5|md2|mdc2>]
[--verbose]+

/usr/bin/csp <ca name> genpublic
[--export=<export directory>]
[--verbose]+

/usr/bin/csp <ca name> list
[--serial=<serial>]
[--all]
[--xinfo]
[--contents]
[--verbose]+

/usr/bin/csp --list

/usr/bin/csp --bundle

If you see this you are ready to con�gure CSP.

3 Con�guring CSP

CSP should be run on a secure host. Ideally it should not be connected to a network. A good candidate is
an old laptop dedicated for use as a CA host or a regular PC with a removable hard-drive which can be kept
under lock and key when the CA is not in use. Before you can start to use CSP to create certifates you must

1. Con�gure CSP

2. Create a CA

If you decide to run CSP in a production environment on a separate host it is advisable to create a separate
user which will login and issue certi�cates.

CSP depends on a set of con�guration �les to work. Examples of these �les and a good starting-point for
your setup can be found in the CSP tarball. Copy the directory CSP-x/ca to a directory where you will setup
your CA. If you choose to run CSP as a separate user this directory will typically be this users homedirectory:

3. Con�guring CSP 4

pwd
/some/where/CSP-x
su ca
> cd $HOME
> pwd
/home/ca
> cp -r /some/where/CSP-x/ca .
> chown -R ca ca

For the rest of the paper we will assume that the current working directory is the $HOME of this user or
wherever the ca directory was copied. Now look inside this directory:

> tree ca
ca
|-- csp
`-- etc

|-- aliases.txt
|-- crl_extensions.conf
|-- extensions.conf
|-- oids.conf
|-- public_html
| |-- certs
| | |-- cert.html.mpp
| | |-- index.html.mpp
| | |-- revoked.html.mpp
| | `-- valid.html.mpp
| `-- index.html.mpp
`-- types.txt

The directory csp will eventually hold the certi�cate authorities you create. The directory etc contains
con�guration �les. The �les aliases.txt, types.txt and oids.conf are global con�guration �les but all
other �les are templates which are copied to each new CA as it is created. This means that if you want to
make changes that a�ect all CA you must edit these �les before creating production CAs.

A description of these �les can be found in the appendix. For now it is enough to look at extensions.conf
and crl_extensions.conf. These �les are essentially parts of an openssl con�guration �le and share the
same syntax. Take some time to take a look at these �les before proceeding. Finally take a look at the �les
in the directory public_html. These �les consititute a template for a public website of a CA. CSP does not
contain a dynamic public interface (such as a CGI-script for searching the certi�cate database) but it does
contain a means of generating and publishing such a public website. This website is static and is updated
manually as a part of the regular maintenance which must be performed.

If you want to impose a common structure to the public websites of your CAs you should edit these �les
now. The format of these �les is explained in the appendix.

Finally in order for csp to work you must set two environment variables. This is best done in your (or in
the ca users) .profile or equivalent:

4. Creating a Certi�cate Authority (CA) 5

> CSPHOME=$HOME/ca
> OPENSSL=/where/your/openssl/lives/bin/openssl
> export CSPHOME OPENSSL

If you use csh/tcsh then use setenv instead:

> setenv CSPHOME $HOME/ca
> setenv OPENSSL /where/your/openssl/lives/bin/openssl

The CSPHOME variable must refer to the csp con�guration directory and OPENSSL refers to the location of
your openssl program. If you fail to set one or both of these variables csp will complain when you try to
do anything beyond showing the list of options.

Even though csp is designed to manage multiple CAs it is only meant to be used by one user at a time.
Running multiple copies of csp against the same $CSPHOME can have unexpected e�ects.

4 Creating a Certi�cate Authority (CA)

There are basically two ways to create a CA:

1. Create a self-signed ("root") CA

2. Create a CA subordinate to another CA

In both cases we begin the process by initializing the CA with the csp create command. This example
shows the typical structure of all csp commands: The �rst argument is always the name of a CA and the
second is always the csp command to execute on the CA.

> csp MyCA create
[CSP][MyCA] Successfully created CA MyCA

Here MyCA is the symbolic name of the newly created, but not yet operational certi�cate authority. This
example also shows the way csp reports on progress. This command created a new directory named MyCA
under ca/csp:

> tree ca/csp/MyCA
ca/csp/MyCA
|-- certs
|-- crl_extensions.conf
|-- extensions.conf
|-- index.txt
|-- private
| `-- keys
|-- public_html
| |-- certs
| | |-- cert.html.mpp

4. Creating a Certi�cate Authority (CA) 6

| | |-- index.html.mpp
| | |-- revoked.html.mpp
| | `-- valid.html.mpp
| `-- index.html.mpp
|-- serial
`-- tmp

This listing is similar to to the above listing of ca/etc for good reason since most of the �les above are
simply copies of �les from that directory. There are a few additional directories which will hold keys and
certi�cates you issue, a �le serial which contains the last serial number of a certi�cate issued from this CA
and the usual OpenSSL certi�cate database (index.txt).

Now proceed with either of the next two sections depending on the type of certi�cate authority you are
creating.

4.1 Creating a self-signed (root) CA

When creating a self-signed CA the contents of the CA certi�cate (extensions and standard �elds) is de-
termined by the con�guration �les in the newly created directory. That means that before completing the
setup of this CA you must skip to the next section and at least edit csp/csp/MyCA/extensions.conf to
re�ect your situation.

Next proceed this way:

> csp MyCA init --keysize=2048 --days=365 \
'CN=My Certificate Authority,O=Exempel AB,C=SE'

[CSP][MyCA] Generating CA key
[CSP][MyCA] Private key password:
[CSP][MyCA] Re-enter Private key password:
[CSP][MyCA] Successfully initialized self-signed CA MyCA

The options used would generate a CA valid for one year with a keysize of 2048 bits and with the dis-
tinguished name of CN=My Certificate Authority,O=Exempel AB,C=S. Typically all csp commands that
issue requests or certi�cates takes as the �nal argument the distinguished name of the object to be pro-
duced. In this example the password for the CA private key was entered by hand at the prompt. Using the
��keypass argument this can be sent to csp on the command-line.

4.2 Creating a subordinate CA

Setting up a subordinate request is a multi-stage process. First you must create a pkcs#10 request for a root
certi�cate. Next send this request to the certi�cate authority which is going to sign the request and issue your
root certi�cate. Next obtain your root certi�cate from the superior CA and import it into your CA making
it operational. The �rst and last step is done using csp commands but the other steps (communicating with
the superior CA) lies outside the scope of this guide.

First create the pkcs#10 request:

4. Creating a Certi�cate Authority (CA) 7

> csp MyCA init --keysize=2048 --csrfile=myca.csr \
'CN=My Certificate Authority,O=Exempel AB,C=SE'

[CSP][MyCA] Successfully created CA MyCA
[CSP][MyCA] Generating CA key
[CSP][MyCA] Private key password:
[CSP][MyCA] Re-enter Private key password:
[CSP][MyCA] Successfully generated CA request for CA MyCA

Note the di�erences between this command and the one in the previous section where a self-signed certi�cate
was created. The ��keysize argument is the same and the distinguished name is present as the last argument
but instead of a validity period a ��csrfile argument is included. This argument refers to a �le where the
pkcs#10 �le is to be created. Typically this �le is then written to a diskette or sent in an email or posted in
a web form to the superior CA.

Before sending the request to the superior CA take a moment to look it over using openssl:

> openssl req -text < myca.csr
Using configuration from /usr/local/ssl/openssl.cnf
Certificate Request:

Data:
Version: 0 (0x0)
Subject: CN=My Certificate Authority, O=Exempel AB, C=SE
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
RSA Public Key: (2048 bit)

Modulus (2048 bit):
00:db:5e:14:06:f8:39:cc:2a:b4:fa:ee:f4:18:48:
97:72:e1:54:28:16:cd:5b:72:68:2d:8e:bf:29:e2:
a0:54:7a:f0:0f:08:16:e7:25:94:fb:af:e0:e2:d4:
1c:a0:89:86:01:5b:15:ad:70:f3:1d:23:34:df:a8:
e2:ec:c0:ef:0d:06:4b:fa:03:9c:49:fb:a9:86:90:
da:c1:f1:a3:e6:9c:70:bd:f1:c2:9b:dd:d2:1c:12:
85:59:0c:dc:b1:dd:d4:e5:6c:09:60:e1:ad:b8:30:
d7:24:bd:c4:33:36:21:48:f6:d6:d0:e4:ca:94:8a:
ac:4e:47:94:b6:7a:17:23:6a:b5:fe:7c:88:69:99:
2a:d0:e1:84:7a:ae:f8:90:da:47:1a:13:44:43:41:
e0:76:50:de:92:b1:a0:9b:f1:3f:c7:fe:eb:59:8b:
e9:5f:55:7c:22:30:c4:3b:91:9f:56:a0:55:97:15:
ed:56:59:6a:5f:6d:78:94:2e:c1:d8:7d:56:51:f3:
fd:2a:e7:61:a2:1b:fe:8a:39:7d:be:50:1c:e1:38:
3c:03:23:f9:a3:b1:aa:1d:ca:a0:9c:f1:54:25:d0:
b6:1d:9f:62:6f:c2:76:07:f3:cb:4d:e2:4a:78:5c:
e4:58:3f:b1:ac:81:ed:13:e9:c9:bf:53:cf:e7:3f:
e4:d5

Exponent: 65537 (0x10001)
Attributes:

a0:00

4. Creating a Certi�cate Authority (CA) 8

Signature Algorithm: sha1WithRSAEncryption
6a:d5:7a:23:89:84:ec:b1:e6:89:22:d3:72:08:f5:d4:33:16:
2e:10:9e:7e:84:6b:a5:e2:55:6c:9e:5a:46:ef:43:14:1e:61:
b4:c5:b5:10:07:a5:8e:5f:b5:65:de:6c:0f:69:42:45:3c:e3:
b2:5b:ea:48:a3:27:69:ce:8c:da:b0:25:43:88:f9:1c:95:b9:
22:e2:db:69:a4:19:5c:b3:74:d1:3d:ec:b6:7e:a8:2b:4f:2b:
3d:f7:e6:ee:8f:bc:76:e4:83:a3:b6:a6:4b:d1:f2:f3:bc:35:
cb:eb:23:45:cc:82:9b:2d:57:81:a8:a7:9f:be:2b:75:d2:6e:
d0:a7:a4:78:4c:84:1f:4b:73:32:7c:7d:d1:25:c1:3a:d5:60:
44:f4:2e:5b:e8:e3:ae:20:d2:8b:a8:6b:ef:0a:f5:bb:93:a4:
73:58:84:e6:56:fb:c2:df:e7:8b:44:2a:96:31:69:8e:19:a8:
07:a7:a9:6a:b1:c1:aa:16:f0:3b:93:e6:6a:94:5c:23:2c:7c:
82:67:d9:e9:3d:86:80:68:cf:81:f5:ee:68:1d:93:d5:ca:73:
b0:c9:cb:30:25:8a:7f:39:30:0d:32:dd:d5:7c:9e:c0:46:18:
62:75:86:ba:a1:c4:06:84:2c:80:25:ac:4a:4d:e8:15:ec:3b:
05:fa:1a:49

-----BEGIN CERTIFICATE REQUEST-----
MIICijCCAXICAQAwRTEhMB8GA1UEAxMYTXkgQ2VydGlmaWNhdGUgQXV0aG9yaXR5
MRMwEQYDVQQKEwpFeGVtcGVsIEFCMQswCQYDVQQGEwJTRTCCASIwDQYJKoZIhvcN
AQEBBQADggEPADCCAQoCggEBANteFAb4OcwqtPru9BhIl3LhVCgWzVtyaC2Ovyni
oFR68A8IFucllPuv4OLUHKCJhgFbFa1w8x0jNN+o4uzA7w0GS/oDnEn7qYaQ2sHx
o+accL3xwpvd0hwShVkM3LHd1OVsCWDhrbgw1yS9xDM2IUj21tDkypSKrE5HlLZ6
FyNqtf58iGmZKtDhhHqu+JDaRxoTRENB4HZQ3pKxoJvxP8f+61mL6V9VfCIwxDuR
n1agVZcV7VZZal9teJQuwdh9VlHz/SrnYaIb/oo5fb5QHOE4PAMj+aOxqh3KoJzx
VCXQth2fYm/Cdgfzy03iSnhc5Fg/sayB7RPpyb9Tz+c/5NUCAwEAAaAAMA0GCSqG
SIb3DQEBBQUAA4IBAQBq1XojiYTsseaJItNyCPXUMxYuEJ5+hGul4lVsnlpG70MU
HmG0xbUQB6WOX7Vl3mwPaUJFPOOyW+pIoydpzozasCVDiPkclbki4ttppBlcs3TR
Pey2fqgrTys99+buj7x25IOjtqZL0fLzvDXL6yNFzIKbLVeBqKefvit10m7Qp6R4
TIQfS3MyfH3RJcE61WBE9C5b6OOuINKLqGvvCvW7k6RzWITmVvvC3+eLRCqWMWmO
GagHp6lqscGqFvA7k+ZqlFwjLHyCZ9npPYaAaM+B9e5oHZPVynOwycswJYp/OTAN
Mt3VfJ7ARhhidYa6ocQGhCyAJaxKTegV7DsF+hpJ
-----END CERTIFICATE REQUEST-----

Note that by default csp always uses sh1WithRSAEncryption for all signatures. This algorithm is secure
and should be a good choice for most applications.

Upon receipt of the ca certi�cate from the superior CA (stored in a PEM-encoded certi�cate �le myca.crt
in the current directory) do this:

> csp MyCA init --crtfile=myca.crt
[CSP][MyCA] Successfully initialized CA MyCA

This command �nishes the setup of your subordinate CA. Read on to �nd out how to operate a certi�cate
authority.

4. Creating a Certi�cate Authority (CA) 9

4.3 Post-con�guration tasks

Before issuing certi�cates you must modify the con�guration of your newly created CA. Take a look at the
contents of the directory where MyCA is kept:

[leifj@njal pki-kurs]$ tree ca/csp/MyCA
ca/csp/MyCA
|-- ca.crt
|-- certs
|-- crl_extensions.conf
|-- extensions.conf
|-- index.txt
|-- private
| |-- ca.key
| `-- keys
|-- public_html
| |-- certs
| | |-- cert.html.mpp
| | |-- index.html.mpp
| | |-- revoked.html.mpp
| | `-- valid.html.mpp
| `-- index.html.mpp
|-- serial
`-- tmp

A few additional �les have been created during setup. The important �les are of course ca.crt and
private/ca.key which is the ca certi�cate and the ca private key respectively.

First take a look at the main extensions section of extensions.conf (details about this �le can be found in
the appendix):

...

##
These extensions are always present
##

nsCaRevocationUrl = http://ca.example.com/crl-v1.crl
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid,issuer:always
authorityInfoAccess = caIssuers;URI:http://ca.example.com/ca.crt
crlDistributionPoints = URI:http://ca.example.com/crl-v2.crl
certificatePolicies = ia5org,@certpolicy
issuerAltName = email:ca@example.com,URI:http://ca.example.com
subjectAltName = @altnames

[altnames]

4. Creating a Certi�cate Authority (CA) 10

%ifdef EMAIL
email.1 = %{EMAIL}
%endif
%ifdef URI
URI.1 = %{URL}
%endif
%ifdef DNS
DNS.1 = %{DNS}
%endif
%ifdef IP
IP.1 = %{IP}
%endif

...

You should edit this �le to replace ca.example.com with the domain-name of your public CA website (to be
covered later in this guide). Future versions of csp may do this automatically during setup of the CA. These
extensions are always present in all certi�cates issued by this CA and consistitue a good set of defaults. Next
look at the certpolicy section further down in the �le:

[certpolicy]

policyIdentifier = 1.1.1.1.1
Map this to a real document in your webserver configuration
CPS.1 = http://ca.example.com/CPS
userNotice.1 = @notice

[notice]

explicitText="Limited Liability, see http://ca.example.com/CP"

These sections must also be edited to re�ect the OID of your certi�cate policy and the location of your
certi�cate policy (CP) and certi�cate practice statement (CPS). The meaning of these terms are outside the
scope of this document. If you are creating a CA without a policy (not recommended) you should remove
these two sections and also the certificatePolicies attribute from the extensions section above.

Rembember that ca/csp/MyCA/extensions.conf a�ects certi�cates issued by this MyCA and not the con-
tents of the CA certi�cate of MyCA itself. The content of this certi�cate is only created from this �le in the
case of a self-signed CA. If you are creating a self-signed CA you should edit this �le before creating the CA
certi�cate using csp init (see the section of self-signed CA above).

Normally this completes the setup of MyCA. If you need to add extensions to your certi�cate revocation
lists (CRL) you should also take a look at crl_extensions.conf. However unless you know what you are
doing you should refrain from changing that �le. By default CSP produces both version 1 and version 2
CRLs and this �le only a�ects the content of version 2 CRLs.

Finally you should modify the �les containing the templates for the public website. These �les are found in
the directory ca/csp/MyCA/public_html. In principle you can have any template html-�les in this directory

5. CA Operations 11

and when csp produces the public website (see below) any �les found in this directory goes through a rewrite
engine that takes all �les ending in .mpp and produces a �le with the same name without this extension.
The only exception to this rule is the �le public_html/certs/cert.html.mpp which is used as a template
for each certi�cate in the database. More information about the structrure and syntax of these �le can be
found in the appendix.

At the very least you should edit these �les and replace the default email adresses and contact information
found there.

5 CA Operations

When your CA is operational you can start to issue certi�cates and performing other administrative tasks.

5.1 Issuing certi�cates

There are two ways to issue a certi�cate: either sign a pkcs#10 request you have obtained from a subject or
issue a certi�cate directly without a request. The �rst case is most common in the case of a webserver or a
subordinate CA. We will cover them in turn:

Assume we have received a request for a certi�cate for a webserver in the �le webserver.csr. To sign it
proceed as follows:

> csp MyCA sign --type=server --csrfile=webserver.csr
Using configuration from /usr/local/ssl/openssl.cnf
Certificate Request:

Data:
Version: 0 (0x0)
Subject: CN=www.example.com, O=Exempel AB, C=SE
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)

Modulus (1024 bit):
00:c7:56:3c:7c:a2:a1:35:e7:67:4d:39:d3:97:85:
55:4e:71:d9:27:e8:c0:93:52:ce:47:11:49:a9:ff:
bb:1e:0f:8c:9e:fe:e2:a4:f2:d6:6a:20:62:dd:2c:
83:73:61:f8:1f:63:de:c0:33:32:06:f9:4d:ca:a8:
b2:3d:b9:78:c5:d1:e8:66:bb:f7:b0:4e:6c:c1:7d:
ca:54:c6:68:66:eb:ab:60:6f:c6:6f:89:e5:15:a5:
d9:3f:14:bd:8c:09:4c:78:52:21:09:31:68:9a:e4:
2f:d3:c2:83:c8:fc:2d:ac:da:2b:e9:5f:3c:fe:cc:
ff:bb:ec:b7:ca:2c:e3:6c:a9

Exponent: 65537 (0x10001)
Attributes:

a0:00
Signature Algorithm: sha1WithRSAEncryption

33:5e:ae:7d:9a:fc:35:75:3f:24:f0:b2:2a:93:59:85:2c:80:
fc:ee:4f:15:30:d3:2b:b2:a4:2b:01:52:77:e2:ec:16:32:e3:

5. CA Operations 12

0f:40:85:89:1d:6a:a1:dc:14:4f:89:2c:fd:61:64:7a:93:59:
33:9b:3d:bb:5f:42:18:81:91:b8:ec:68:3c:56:09:0b:a9:c6:
da:d3:67:f5:bb:d4:85:be:1d:9d:9e:c2:07:0a:b0:4f:e8:9d:
c5:e2:db:5e:33:fa:00:e3:a0:6b:2f:3a:9d:84:bd:d7:c3:89:
3e:f1:b4:f3:f1:9f:9c:c9:e2:a6:67:6a:34:80:39:b6:29:35:
64:3e

Really sign this? (y or n) [default n] y
[CSP][MyCA] Signing request
[CSP][MyCA] CA Private key password:

Remember that the password is not echoed on the tty (even as '*'s). Always look at the request before
signing it. Next take a look at the contents of the certi�cate database:

> csp MyCA list
Serial : 01
Status : Valid
Subject : CN=www.example.com,O=Exempel AB,C=SE
Expires : Thu Jun 27 22:33:40 2002

The ��type=server command-line argument is very important. It tells csp which set of extensions to select
in ca/csp/MyCA/extensions.conf. Look at the top of this �le again:

...

##
Extensions by certificate type
##

%ifdef TYPE_CA
basicConstraints = critical,CA:TRUE
keyUsage = critical,cRLSign, keyCertSign
nsCertType = sslCA, emailCA, objCA
%endif

%ifdef TYPE_USER
nsCertType = client, email
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
extendedKeyUsage = clientAuth,emailProtection
%endif

%ifdef TYPE_OBJSIGN
nsCertType = objsign
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
extendedKeyUsage = codeSigning
%endif

%ifdef TYPE_SERVER

5. CA Operations 13

nsCertType = server
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
extendedKeyUsage = serverAuth
%endif

...

Since we said ��type=server in our signing command the last section of this �le was used when producing
the certi�cate. This is signi�cant since it allows this certi�cate to be used as an SSL server certi�cate and
also causes the certi�cate to contain the right netscape extension for server use. Unless speci�ed the type
defaults to user which is something else altogether.

You could have issued the same certi�cate directly by the following command:

> csp MyCA issue --type=server --days=365 'CN=www.example.com,O=Exempel AB,C=SE'
[CSP][MyCA] Generating new key
[CSP][MyCA] Private key password:
[CSP][MyCA] Re-enter Private key password:
[CSP][MyCA] Create certificate request for CN=www.example.com,O=Exempel AB,C=SE
Using configuration from /usr/local/ssl/openssl.cnf
Certificate Request:

Data:
Version: 0 (0x0)
Subject: CN=www.example.com, O=Exempel AB, C=SE
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)

Modulus (1024 bit):
00:c3:6f:20:bd:50:4b:a2:4e:16:3d:b7:d2:b4:56:
9f:35:90:10:f8:4f:74:83:0b:2c:90:bb:25:a0:cc:
22:8f:e5:d4:53:ff:60:36:a2:b3:9d:21:a4:5d:67:
bb:6f:06:a0:e9:6a:66:dc:ce:54:16:72:43:fc:be:
e7:a1:a3:d7:21:1e:ff:6a:53:b2:1b:d0:1c:b3:e0:
85:1f:bd:ab:b0:a9:21:bd:8f:da:80:44:e6:98:a4:
a3:9c:01:fe:38:54:1c:5e:a6:bb:a2:81:a6:a8:46:
3d:91:f4:17:2c:35:99:f5:0e:00:fd:2c:84:e9:a1:
d4:d0:c8:73:82:00:cd:4e:39

Exponent: 65537 (0x10001)
Attributes:

a0:00
Signature Algorithm: sha1WithRSAEncryption

03:e0:90:66:9a:bf:0d:24:25:4c:c8:a8:4a:2d:29:f7:fa:3c:
45:06:0a:e3:76:41:de:fc:d7:08:b1:0a:3c:a6:38:98:41:6a:
64:d9:58:f9:e2:55:ea:65:ad:e5:6c:b9:e3:48:21:dc:85:44:
a8:ac:29:af:d3:86:ee:c0:d9:4d:5c:59:f0:b9:3a:1d:fa:76:
39:48:be:cb:61:de:e1:a0:a9:88:86:52:ef:d3:3a:d1:5a:72:
2e:6c:e3:3e:d8:cc:4e:fa:6d:fa:2c:43:ba:6b:c5:95:57:a4:
1c:7b:da:6f:38:a2:ff:f1:9e:d0:5c:f5:59:e8:24:d3:74:b6:

5. CA Operations 14

80:61
Really sign this? (y or n) [default n] y
[CSP][MyCA] Signing request
[CSP][MyCA] CA Private key password:

The astute reader will note that what is really happening here is that a request is �rst created and then
signed. The above command is actually equivalent to the following commands (abbreviated output):

> csp MyCA request --csrfile=tmp.csr 'CN=www.example.com,O=Exempel AB,C=SE'
...
> csp MyCA sign --type=server --days=365 --csrfile=tmp.csr
...

5.2 Revoking certi�cates

Assume we need to revoke the newly created certi�cate:

> csp MyCA revoke 01
Certificate:

Data:
Version: 3 (0x2)
Serial Number: 1 (0x1)
Signature Algorithm: sha1WithRSAEncryption
Issuer: CN=My Certificate Authority, O=Exempel AB, C=SE
Validity

Not Before: May 27 22:33:40 2001 GMT
Not After : May 27 22:33:40 2002 GMT

Subject: CN=www.example.com, O=Exempel AB, C=SE
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)

Modulus (1024 bit):
00:c7:56:3c:7c:a2:a1:35:e7:67:4d:39:d3:97:85:
55:4e:71:d9:27:e8:c0:93:52:ce:47:11:49:a9:ff:
bb:1e:0f:8c:9e:fe:e2:a4:f2:d6:6a:20:62:dd:2c:
83:73:61:f8:1f:63:de:c0:33:32:06:f9:4d:ca:a8:
b2:3d:b9:78:c5:d1:e8:66:bb:f7:b0:4e:6c:c1:7d:
ca:54:c6:68:66:eb:ab:60:6f:c6:6f:89:e5:15:a5:
d9:3f:14:bd:8c:09:4c:78:52:21:09:31:68:9a:e4:
2f:d3:c2:83:c8:fc:2d:ac:da:2b:e9:5f:3c:fe:cc:
ff:bb:ec:b7:ca:2c:e3:6c:a9

Exponent: 65537 (0x10001)
X509v3 extensions:

Netscape Cert Type:
SSL Client, S/MIME

X509v3 Key Usage:

5. CA Operations 15

Digital Signature, Non Repudiation, Key Encipherment
X509v3 Extended Key Usage:

TLS Web Client Authentication, E-mail Protection
Netscape CA Revocation Url:

http://ca.example.com/crl-v1.crl
X509v3 Subject Key Identifier:

93:E9:F4:2F:1C:6C:0B:90:D9:DC:5E:59:15:FA:A5:46:5E:77:52:D1
X509v3 Authority Key Identifier:

keyid:07:40:9A:AA:59:C8:36:8B:EA:74:80:21:39:3B:2D:FE:87:47:38:C4
DirName:/CN=Root CA/O=Exempel AB/C=SE
serial:02

Authority Information Access:
CA Issuers - URI:http://ca.example.com/ca.crt

X509v3 CRL Distribution Points:
URI:http://ca.example.com/crl-v2.crl

X509v3 Certificate Policies:
Policy: 1.1.1.1.1

CPS: http://ca.example.com/CPS
User Notice:
Explicit Text: Limited Liability, see http://ca.example.com/CP

Signature Algorithm: sha1WithRSAEncryption
47:b7:30:4a:b9:c5:9e:76:a5:9b:d9:c4:96:b6:75:fe:4f:a0:
d6:84:db:29:73:47:ed:23:13:c0:ae:90:33:de:28:18:71:d5:
de:28:fe:33:8a:0c:56:e0:dd:a1:95:ae:0d:a4:9a:fc:12:e8:
07:65:9d:10:71:45:f2:b2:79:66:f6:9b:fc:1d:10:39:8c:6c:
da:b1:4f:98:6b:16:61:f2:89:5d:35:7d:54:2a:8b:29:8b:0d:
e4:52:1c:71:8e:39:0c:22:00:86:2d:44:5b:16:dc:74:48:f0:
16:d4:09:22:3a:3d:13:a4:c3:4e:30:6d:d0:58:97:05:dc:12:
f1:23:fb:40:30:0c:28:e7:c2:ac:b4:d4:bc:d1:89:a5:b1:bc:
a4:20:64:25:f7:70:a3:b4:4e:b5:23:ab:c7:b4:d1:16:35:58:
a9:ec:23:f1:35:88:1e:7d:51:be:40:13:7f:13:b7:b4:7a:f3:
ba:21:83:b4:a1:26:f5:71:d3:4e:21:89:89:14:3e:64:9d:93:
02:86:44:d8:89:3b:47:c6:64:08:4b:f6:ba:ce:58:9d:60:6e:
f9:a6:d2:cd:ee:35:dd:a7:1b:0c:34:40:8d:3c:0a:a8:b5:2a:
e9:b5:a2:cb:38:22:69:5a:da:4f:70:cb:2b:f3:22:9c:1a:b1:
1e:1d:d2:92

Really revoke this? (y or n) [default n] y
[CSP][MyCA] CA Private key password:

Note that the last argument in this case (the serial number of the certi�cate) must be entered litterally, i.e
01 and not 1

Next list the contents of the certi�cate database again, this time using the ��all switch to include both
revoked and valid certi�cates:

5. CA Operations 16

> csp MyCA list --all
Serial : 01
Status : Revoked
Subject : CN=www.example.com,O=Exempel AB,C=SE
Expires : Thu Jun 27 22:33:40 2002
Revoked : Wed Jun 27 22:43:31 2001

Revoking a certi�cate is not enough though. You must also create and publish a new certi�cate revocation
list (CRL).

5.3 Exporting certi�cates and private keys

In a perfect world you should never generate private keys on the certi�cate server and only sign pkcs#10
request. In practice however it is often necessary to issue certi�cate based on a non- cryptographically signed
request (such as a verbal or written request). In this case the private key is created by csp and stored in the
directory private/keys relative to the CA directory.

To export the private key in this format simply transfer it to removable media. Note that csp does not
require the key to be present in the database and the key can be removed when the subject has received her
copy. Also note that the key is protected with the password chosen when the certi�cate was issued.

A more secure way to export a combination of a certi�cate and a private key is to create a pkcs#12 object.
This cryptographically protected structure combines a certi�cate chain and a private key in a single �le which
is protected by a password (sparate from the private key password) and which can be transported in the
open to the subject. Such a structure can be imported into many browsers to be used as a user certi�cate.
Alternatively it can be unpacked using openssl (for instance) to a raw private key and certi�cate to be used
in a webserver.

To produce a pkcs#12 object of an issued certi�cate/private keypair use the following command:

> csp MyCA p12 01
[CSP][MyCA] Private key password:
[CSP][MyCA] PKCS12 export password:

Here 01 is the serial of the certi�cate you wish to export. If this certi�cate or the corresponding private key
is not found in the database csp is unable to produce the pkcs#12 object.

The pkcs#12 objects are stored in the directory p12 relative to the CA directory:

> tree ca/csp/MyCA/p12
ca/csp/MyCA/p12
`-- 02.p12

5.4 Perioding maintenance

To successfully operate your CA you must perform certain tasks at regular intervals such as generating and
publishing certi�cate revocation lists and updating the public website. Note that the public website is the
prefered way to export newly created certi�cates. This means that when you issue certi�cates and when you
generate a new CRL you should always generate and publish a new public website.

5. CA Operations 17

5.4.1 Generating CRLs

To generate a certi�cate revocation list do the following:

> csp MyCA gencrl
[CSP][MyCA] CA Private key password:

This produces both a version 1 and version 2 crl in ca/csp/MyCA. How often CRLs should be created is
typically speci�ed in the certi�cate policy or certi�cate practice statement for your CA. Each CRL contains
a �eld which says when the next update is due. By default csp annonces a new update in a CRL 30 days
in the future. This means that even if you never issue (or revoke) a single certi�cate your CRLs must be
updated every 30 days. Using the ��crldays and ��crlhours switch you can change the time between CRL
updates.

It is usually a good idea to publish a new CRL each time a certi�cate is revoked so that new users is informed
of the revocation immediately.

5.4.2 Producing the public website

Each time you update your CRLs or publish a new certi�cate you must create and publish a new public
website. Since csp is designed to be run on a secure and isolated host the typical scenario is that the public
website is produces on the CA host and transported to the public website using a read-only medium. Here
is how to produce the public website:

> csp MyCA genpublic --export=/dev/fd0
> tree /dev/fd0
/dev/fd0
|-- ca.crt
|-- certs
| |-- 01.crt
| |-- 01.html
| |-- 01.pem
| |-- 02.crt
| |-- 02.p12
| |-- 02.html
| |-- 02.pem
| |-- index.html
| |-- revoked.html
| `-- valid.html
|-- crl-v1.crl
|-- crl-v2.crl
`-- index.html

In this example the CA has been in operation and has issued two certi�cates one of which has been subse-
quently revoked. The export directory (in this case a �oppy) does not contain any sensitive information and
can be publised as is. One way is to setup a (virtual) webserver somewhere and copy the entire contents of
the export directory to that webservers htdocs directory.

A. CSP Architecture 18

Note that a pkcs12-object is present in the certs directory. Since pkcs12 objects contain (twice encrypted)
private keys it may be a good idea to remove these �les from the certi�cate database when the user has been
given time to download the �le. That way when the public website is generated the pkcs12 object will not
be included or refered to in the html-�les.

When updating the public website make sure to delete any contents not generated by csp before copying the
contents of the export medium to the public webserver directory.

A CSP Architecture

One of the design goals behind csp was to be able to support types of distinguished names not easily handled
by static OpenSSL con�guration �les notably DC-style names. Although not mentioned in detail above
the problem with DC-style names in OpenSSL is that the hierarchy is (for the purpouse of this excercise)
arbitrarily deep and at each level the same attribute is used.

To solve this problem csp assembles a temporary openssl con�guration �le each time such a �le is needed by
any of the openssl commands. This structure allows the con�gueration to be changed at each invocation of
csp withouth the need for editing con�guration �les simply by allowing command-line arguments to a�ect
the contents of the temporary con�guration �le.

B Debugging CSP

To see the output from openssl commands executed by csp simply include the switch ��verbose (which
can be included multiple times for more output). Conversely csp can be less chatty by including the switch
��noconfirm which causes csp to stop asking permission to do various things (like signing requests).

An important tool in debugging csp can be the temporary con�guration �les. These are normally deleted
on completion of each openssl command but if you de�ne the environment variable CSPDEBUG these �les are
saved in tmp relative to the CA directory. Setting this variable also causes csp to echo each openssl command
as it is run.

C Known bugs

Due to a bug in OpenSSL csp sometimes says "using con�guration from /usr/local/ssl/openssl.conf" or
wherever you have openssl installed. This message can be ignored.

There are undoubtedly many other bugs waiting to be discovered. Report them to csp-bugs@it.su.se.

D CSP Con�guration �le syntax

The main CSP con�guration �les extensions.conf and crl_extensions.conf are essentially partial
OpenSSL con�guration �les and share syntax with that �le. Apart from standard OpenSSL syntax de-
scribing extensions csp adds a simple macro language which can be used to change the contents of the
con�guration �le based on the csp command and the command-line arguments. This language is based
(loosly) on Transarc mpp (macro pre processor) and contain the following set of constructions:

D. CSP Con�guration �le syntax 19

1. %if/%endif

2. %ifdef/%endif

3. %include

4. %{variable} (variable expansion)

The most commonly used is %ifdef which takes as its �rst argument a variable. The enclosing block is
included in the output if and only if the variable is "de�ned". The following is a list of variables available
when issuing certi�cates or signing pkcs#10 requests:

1. TYPE_type: The type of certi�cate beeing created.

2. URI, EMAIL, DNS and IP: These correspond to the command-line arguments to csp issue and csp
sign and contain the various forms of subjectAltName.

When generating the certi�cate html �les (certs/serial.html from certs/cert.html.mpp) in the public
website the following variables are available:

1. DATE printable version of the current date

2. SUBJECT_SERIAL the certi�cate serial number

3. SUBJECT_DN the distinguished name of the subject

4. ISSUER_DN the distinguished name of the issuer

5. SUBJECT_SHA1 the SHA1 �ngerprint of the certi�cate

6. SUBJECT_MD5 the MD5 �ngerprint of the certi�cate

7. SUBJECT_NOTBEFORE and SUBJECT_NOTAFTER the validity period of the certi�cate (printable dates)

8. SUBJECT_PKCS12 this is de�ned when a pkcs12 object exists for the certi�cate/keypair.

Finally when generating all other html �les in the public website the following variables are available:

1. DATE printable version of the current date

2. VALID an html table with links to valid certi�cates

3. VALID_COUNT the number of valid certi�cates

4. REVOKED an html table with links to revoked certi�cates

5. REVOKED_COUNT the number of revoked certi�cates

6. EXPIRED an html table with links to expired certi�cates

7. EXPIRED_COUNT the number of expired certi�cates

8. SUBJECT_SERIAL the CA certi�cate serial number

9. SUBJECT_NOTBEFORE and SUBJECT_NOTAFTER the validity period of the CA certi�cate (printable dates)

10. SUBJECT_DN the distinguished name of the CA certi�cate

11. SUBJECT_SHA1 the SHA1 �ngerprint of the CA certi�cate

12. SUBJECT_MD5 the MD5 �ngerprint of the CA certi�cate

E. CSP Con�guration �le reference 20

E CSP Con�guration �le reference

E.1 extensions.conf

##
This is a prototype extension specification file
which is processed using a macro language similar
to transarc mpp. Do not delete the "[extensions]"
section header.
##

[extensions]

##
Extensions by certificate type
##

%ifdef TYPE_CA
basicConstraints = critical,CA:TRUE
keyUsage = critical,cRLSign, keyCertSign
nsCertType = sslCA, emailCA, objCA
%endif

%ifdef TYPE_USER
nsCertType = client, email
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
extendedKeyUsage = clientAuth,emailProtection
%endif

%ifdef TYPE_OBJSIGN
nsCertType = objsign
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
extendedKeyUsage = codeSigning
%endif

%ifdef TYPE_SERVER
nsCertType = server
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
extendedKeyUsage = serverAuth
%endif

##
These extensions are always present
##

nsCaRevocationUrl = http://ca.example.com/crl-v1.crl
subjectKeyIdentifier = hash

E. CSP Con�guration �le reference 21

authorityKeyIdentifier = keyid,issuer:always
authorityInfoAccess = caIssuers;URI:http://ca.example.com/ca.crt
crlDistributionPoints = URI:http://ca.example.com/crl-v2.crl
certificatePolicies = ia5org,@certpolicy
issuerAltName = email:ca@example.com,URI:http://ca.example.com
subjectAltName = @altnames

[altnames]

%ifdef EMAIL
email.1 = %{EMAIL}
%endif
%ifdef URI
URI.1 = %{URL}
%endif
%ifdef DNS
DNS.1 = %{DNS}
%endif
%ifdef IP
IP.1 = %{IP}
%endif

[certpolicy]

policyIdentifier = 1.1.1.1.1
Map this to a real document in your webserver configuration
CPS.1 = http://ca.example.com/CPS
userNotice.1 = @notice

[notice]

explicitText="Limited Liability, see http://ca.example.com/CP"

E.2 crl_extensions.conf

##
This is a prototype CRL extension specification file
which is processed using a macro language similar
to transarc mpp. Do not delete the "[crl_extensions]"
section header.
##

[crl_extensions]

authorityKeyIdentifier = keyid,issuer:always

